Udemy - Recommender Systems and Deep Learning in Python

seeders: 10
leechers: 18
updated:
Added by CourseClub in Other > Tutorials

Download Fast Safe Anonymous
movies, software, shows...

Files

[DesireCourse.Com] Udemy - Recommender Systems and Deep Learning in Python 1. Welcome
  • 1. Introduction.mp4 (21.6 MB)
  • 1. Introduction.vtt (3.8 KB)
  • 2. Outline of the course.mp4 (34.2 MB)
  • 2. Outline of the course.vtt (5.8 KB)
  • 3. Where to get the code.mp4 (27.1 MB)
  • 3. Where to get the code.vtt (6.1 KB)
2. Simple Recommendation Systems
  • 1. Section Introduction and Outline.mp4 (27.2 MB)
  • 1. Section Introduction and Outline.vtt (4.8 KB)
  • 10. Bayesian Approach part 2 (Sampling and Ranking).mp4 (24.5 MB)
  • 10. Bayesian Approach part 2 (Sampling and Ranking).vtt (6.4 KB)
  • 11. Bayesian Approach part 3 (Gaussian).mp4 (32.7 MB)
  • 11. Bayesian Approach part 3 (Gaussian).vtt (9.0 KB)
  • 12. Bayesian Approach part 4 (Code).mp4 (106.5 MB)
  • 12. Bayesian Approach part 4 (Code).vtt (12.2 KB)
  • 13. Demographics and Supervised Learning.mp4 (48.6 MB)
  • 13. Demographics and Supervised Learning.vtt (7.9 KB)
  • 14. PageRank (part 1).mp4 (54.9 MB)
  • 14. PageRank (part 1).vtt (11.4 KB)
  • 15. PageRank (part 2).mp4 (49.9 MB)
  • 15. PageRank (part 2).vtt (12.8 KB)
  • 16. Evaluating a Ranking.mp4 (34.9 MB)
  • 16. Evaluating a Ranking.vtt (5.2 KB)
  • 17. Section Conclusion.mp4 (31.0 MB)
  • 17. Section Conclusion.vtt (4.4 KB)
  • 2. Perspective for this Section.mp4 (18.3 MB)
  • 2. Perspective for this Section.vtt (4.5 KB)
  • 3. Basic Intuitions.mp4 (30.6 MB)
  • 3. Basic Intuitions.vtt (5.9 KB)
  • 4. Associations.mp4 (29.9 MB)
  • 4. Associations.vtt (5.0 KB)
  • 5. Hacker News - Will you be penalized for talking about the NSA.mp4 (37.6 MB)
  • 5. Hacker News - Will you be penalized for talking about the NSA.vtt (8.0 KB)
  • 6. Reddit - Should censorship based on politics be allowed.mp4 (53.1 MB)
  • 6. Reddit - Should censorship based on politics be allowed.vtt (10.1 KB)
  • 7. Problems with Average Rating _ Explore vs. Exploit (part 1).mp4 (47.7 MB)
  • 7. Problems with Average Rating _ Explore vs. Exploit (part 1).vtt (12.3 KB)
  • 8. Problems with Average Rating _ Explore vs. Exploit (part 2).mp4 (45.6 MB)
  • 8. Problems with Average Rating _ Explore vs. Exploit (part 2).vtt (9.2 KB)
  • 9. Bayesian Approach part 1 (Optional).mp4 (44.9 MB)
  • 9. Bayesian Approach part 1 (Optional).vtt (0.0 KB)
3. Collaborative Filtering
  • 1. Collaborative Filtering Section Introduction.mp4 (51.6 MB)
  • 1. Collaborative Filtering Section Introduction.vtt (13.0 KB)
  • 2. User-User Collaborative Filtering.mp4 (60.7 MB)
  • 2. User-User Collaborative Filtering.vtt (15.8 KB)
  • 3. Collaborative Filtering Exercise Prep.mp4 (43.6 MB)
  • 3. Collaborative Filtering Exercise Prep.vtt (12.0 KB)
  • 4. Data Preprocessing.mp4 (115.9 MB)
  • 4. Data Preprocessing.vtt (17.5 KB)
  • 5. User-User Collaborative Filtering in Code.mp4 (153.6 MB)
  • 5. User-User Collaborative Filtering in Code.vtt (18.6 KB)
  • 6. Item-Item Collaborative Filtering.mp4 (47.6 MB)
  • 6. Item-Item Collaborative Filtering.vtt (10.1 KB)
  • 7. Item-Item Collaborative Filtering in Code.mp4 (69.5 MB)
  • 7. Item-Item Collaborative Filtering in Code.vtt (7.6 KB)
  • 8. Collaborative Filtering Section Conclusion.mp4 (29.3 MB)
  • 8. Collaborative Filtering Section Conclusion.vtt (6.2 KB)
4. Matrix Factorization and Deep Learning
  • 1. Matrix Factorization Section Introduction.mp4 (16.9 MB)
  • 1. Matrix Factorization Section Introduction.vtt (4.9 KB)
  • 10. Probabilistic Matrix Factorization.mp4 (23.0 MB)
  • 10. Probabilistic Matrix Factorization.vtt (6.6 KB)
  • 11. Bayesian Matrix Factorization.mp4 (20.7 MB)
  • 11. Bayesian Matrix Factorization.vtt (5.9 KB)
  • 12. Matrix Factorization in Keras (Discussion).mp4 (32.2 MB)
  • 12. Matrix Factorization in Keras (Discussion).vtt (8.4 KB)
  • 13. Matrix Factorization in Keras (Code).mp4 (63.9 MB)
  • 13. Matrix Factorization in Keras (Code).vtt (8.0 KB)
  • 14. Deep Neural Network (Discussion).mp4 (15.0 MB)
  • 14. Deep Neural Network (Discussion).vtt (3.1 KB)
  • 15. Deep Neural Network (Code).mp4 (25.1 MB)
  • 15. Deep Neural Network (Code).vtt (2.9 KB)
  • 16. Residual Learning (Discussion).mp4 (7.5 MB)
  • 16. Residual Learning (Discussion).vtt (2.2 KB)
  • 17. Residual Learning (Code).mp4 (17.2 MB)
  • 17. Residual Learning (Code).vtt (1.7 KB)
  • 18. Autoencoders (AutoRec) Discussion.mp4 (48.9 MB)
  • 18. Autoencoders (AutoRec) Discussion.vtt (11.5 KB)
  • 19. Autoencoders (AutoRec) Code.mp4 (102.3 MB)
  • 19. Autoencoders (AutoRec) Code.vtt (12.6 KB)
  • 2. Matrix Factorization - First Steps.mp4 (68.7 MB)
  • 2. Matrix Factorization - First Steps.vtt (16.7 KB)
  • 3. Matrix Factorization - Training.mp4 (32.6 MB)
  • 3. Matrix Factorization - Training.vtt (9.7 KB)
  • 4. Matrix Factorization - Expanding Our Model.mp4 (33.7 MB)
  • 4. Matrix Factorization - Expanding Our Model.vtt (8.4 KB)
  • 5. Matrix Factorization - Regularization.mp4 (22.4 MB)
  • 5. Matrix Factorization - Regularization.vtt (6.4 KB)
  • 6. Matrix Factorization - Exercise Prompt.mp4 (4.3 MB)
  • 6. Matrix Factorization - Exercise Prompt.vtt (1.3 KB)
  • 7. Matrix Factorization in Code.mp4 (52.4 MB)
  • 7. Matrix Factorization in Code.vtt (6.4 KB)
  • 8. Matrix Factorization in Code - Vectorized.mp4 (97.4 MB)
  • 8. Matrix Factorization in Code - Vectorized.vtt (11.1 KB)
  • 9. SVD (Singular Value Decomposition).mp4 (32.6 MB)
  • 9. SVD (Singular Value Decomposition).vtt (8.2 KB)
5. Restricted Boltzmann Machines (RBMs) for Collaborative Filtering
  • 1. RBMs for Collaborative Filtering Section Introduction.mp4 (10.3 MB)
  • 1. RBMs for Collaborative Filtering Section Introduction.vtt (2.4 KB)
  • 10. RBM Code pt 1.mp4 (70.4 MB)
  • 10. RBM Code pt 1.vtt (8.7 KB)
  • 11. RBM Code pt 2.mp4 (39.6 MB)
  • 11.

Description

Recommender Systems and Deep Learning in Python

The most in-depth course on recommendation systems with deep learning, machine learning, data science, and AI techniques

For More Courses Visit: https://desirecourse.com



Download torrent
4 GB
seeders:10
leechers:18
Udemy - Recommender Systems and Deep Learning in Python


Trackers

tracker name
udp://62.138.0.158:6969/announce
udp://87.233.192.220:6969/announce
udp://88.198.231.1:1337/announce
udp://151.80.120.113:2710/announce
udp://111.6.78.96:6969/announce
udp://90.179.64.91:1337/announce
udp://51.15.4.13:1337/announce
udp://191.96.249.23:6969/announce
udp://35.187.36.248:1337/announce
udp://123.249.16.65:2710/announce
udp://127.0.0.1:6969/announce
udp://210.244.71.25:6969/announce
udp://78.142.19.42:1337/announce
udp://173.254.219.72:6969/announce
udp://51.15.76.199:6969/announce
udp://91.212.150.191:3418/announce
udp://103.224.212.222:6969/announce
udp://92.241.171.245:6969/announce
udp://51.15.40.114:80/announce
udp://37.19.5.139:6969/announce
µTorrent compatible trackers list

Download torrent
4 GB
seeders:10
leechers:18
Udemy - Recommender Systems and Deep Learning in Python


Torrent hash: B43D9FE788C8981D14A02BE31A3542395319B6ED