Udemy - Machine Learning Project - Heart Attack Prediction Analysis

seeders: 11
leechers: 3
updated:

Download Fast Safe Anonymous
movies, software, shows...

Files

[ FreeCourseWeb.com ] Udemy - Machine Learning Project - Heart Attack Prediction Analysis
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1. Introduction to Machine Learning with Real Hearth Attack Prediction Project
    • 1. First Step to the Hearth Attack Prediction Project.mp4 (108.6 MB)
    • 1. First Step to the Hearth Attack Prediction Project.srt (21.4 KB)
    • 2. FAQ about Machine Learning, Data Science.html (15.3 KB)
    • 3. Notebook Design to be Used in the Project.mp4 (97.7 MB)
    • 3. Notebook Design to be Used in the Project.srt (20.3 KB)
    • 4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html (0.1 KB)
    • 5. Examining the Project Topic.mp4 (71.7 MB)
    • 5. Examining the Project Topic.srt (13.9 KB)
    • 6. Recognizing Variables In Dataset.mp4 (115.3 MB)
    • 6. Recognizing Variables In Dataset.srt (23.8 KB)
    2. First Organization
    • 1. Required Python Libraries.mp4 (58.8 MB)
    • 1. Required Python Libraries.srt (12.8 KB)
    • 2. Loading the Statistics Dataset in Data Science.mp4 (9.3 MB)
    • 2. Loading the Statistics Dataset in Data Science.srt (2.7 KB)
    • 3. Initial analysis on the dataset.mp4 (58.7 MB)
    • 3. Initial analysis on the dataset.srt (18.2 KB)
    3. Preparation For Exploratory Data Analysis (EDA) in Data Science
    • 1. Examining Missing Values.mp4 (42.4 MB)
    • 1. Examining Missing Values.srt (13.2 KB)
    • 2. Examining Unique Values.mp4 (41.0 MB)
    • 2. Examining Unique Values.srt (12.9 KB)
    • 3. Separating variables (Numeric or Categorical).mp4 (14.7 MB)
    • 3. Separating variables (Numeric or Categorical).srt (4.6 KB)
    • 4. Examining Statistics of Variables.mp4 (84.3 MB)
    • 4. Examining Statistics of Variables.srt (24.6 KB)
    4. Exploratory Data Analysis (EDA) - Uni-variate Analysis
    • 1. Numeric Variables (Analysis with Distplot) Lesson 1.mp4 (74.6 MB)
    • 1. Numeric Variables (Analysis with Distplot) Lesson 1.srt (20.2 KB)
    • 2. Numeric Variables (Analysis with Distplot) Lesson 2.mp4 (18.3 MB)
    • 2. Numeric Variables (Analysis with Distplot) Lesson 2.srt (5.3 KB)
    • 3. Categoric Variables (Analysis with Pie Chart) Lesson 1.mp4 (69.0 MB)
    • 3. Categoric Variables (Analysis with Pie Chart) Lesson 1.srt (19.7 KB)
    • 4. Categoric Variables (Analysis with Pie Chart) Lesson 2.mp4 (78.0 MB)
    • 4. Categoric Variables (Analysis with Pie Chart) Lesson 2.srt (20.9 KB)
    • 5. Examining the Missing Data According to the Analysis Result.mp4 (50.0 MB)
    • 5. Examining the Missing Data According to the Analysis Result.srt (13.9 KB)
    5. Exploratory Data Analysis (EDA) - Bi-variate Analysis
    • 1. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 1.mp4 (45.3 MB)
    • 1. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 1.srt (11.3 KB)
    • 10. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2.mp4 (64.0 MB)
    • 10. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2.srt (15.4 KB)
    • 11. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 1.mp4 (36.0 MB)
    • 11. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 1.srt (10.1 KB)
    • 12. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 2.mp4 (32.8 MB)
    • 12. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 2.srt (10.3 KB)
    • 13. Relationships between variables (Analysis with Heatmap) Lesson 1.mp4 (33.7 MB)
    • 13. Relationships between variables (Analysis with Heatmap) Lesson 1.srt (8.7 KB)
    • 14. Relationships between variables (Analysis with Heatmap) Lesson 2.mp4 (82.5 MB)
    • 14. Relationships between variables (Analysis with Heatmap) Lesson 2.srt (16.0 KB)
    • 2. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 2.mp4 (32.8 MB)
    • 2. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 2.srt (9.7 KB)
    • 3. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 1.mp4 (22.3 MB)
    • 3. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 1.srt (5.0 KB)
    • 4. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 2.mp4 (52.3 MB)
    • 4. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 2.srt (16.7 KB)
    • 5. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 1.mp4 (26.6 MB)
    • 5. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 1.srt (7.1 KB)
    • 6. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 2.mp4 (43.9 MB)
    • 6. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 2.srt (8.9 KB)
    • 7. Feature Scaling with the Robust Scaler Method.mp4 (32.6 MB)
    • 7. Feature Scaling with the Robust Scaler Method.srt (11.7 KB)
    • 8. Creating a New DataFrame with the Melt() Function.mp4 (48.8 MB)
    • 8. Creating a New DataFrame with the Melt() Function.srt (15.1 KB)
    • 9. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 1.mp4 (39.3 MB)
    • 9. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 1.srt (8.3 KB)
    6. Preparation for Modelling in Machine Learning
    • 1. Dropping Columns with Low Correlation.mp4 (24.8 MB)
    • 1. Dropping Columns with Low Correlation.srt (5.2 KB)
    • 10. Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms.mp4 (10.6 MB)
    • 10. Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms.srt (3.1 KB)
    • 11. Separating Data into Test and Training Set.mp4 (27.8 MB)
    • 11. Separating Data into Test and Training Set.srt (9.4 KB)
    • 2. Visualizing Outliers.mp4 (32.7 MB)
    • 2. Visualizing Outliers.srt (11.9 KB)
    • 3. Dealing with Outliers – Trtbps Variable Lesson 1.mp4 (40.0 MB)
    • 3. Dealing with Outliers – Trtbps Variable Lesson 1.srt (13.7 KB)
    • 4. Dealing with Outliers – Trtbps Variable Lesson 2.mp4 (40.8 MB)
    • 4. Dealing with Outliers – Trtbps Variable Lesson 2.srt (15.2 KB)
    • 5. Dealing with Outliers – Thalach Variable.mp4 (33.7 MB)
    • 5. Dealing with Outliers – Thalach Variable.srt (11.2 KB)
    • 6. Dealing with Outliers – Oldpeak Variable.mp4 (33.3 MB)
    • 6. Dealing with Outliers – Oldpeak Variable.srt (11.0 KB)
    • 7. Determining Distributions of Numeric Variables.mp4 (23.3 MB)
    • 7. Determining Distributions of Numeric Variables.srt (6.5 KB)
    • 8. Transformation Operations on Unsymmetrical Data.mp4 (22.2 MB)
    • 8. Transform

Description

Machine Learning Project: Heart Attack Prediction Analysis



https://DevCourseWeb.com

Published 05/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 53 lectures (7h 23m) | Size: 2.2 GB

Data Science & Machine Learning - Boost your Machine Learning, statistics skills with real heart attack analysis project

What you'll learn
Machine learning describes systems that make predictions using a model trained on real-world data.
Machine learning isn’t just useful for predictive texting or smartphone voice recognition.
Data science uses algorithms to understand raw data. The main difference between data science and traditional data analysis is its focus on prediction.
Data science includes preparing, analyzing, and processing data. It draws from many scientific fields, and as a science, it progresses by creating new algorithm
Data Scientists use machine learning to discover hidden patterns in large amounts of raw data to shed light on real problems.
First Step to the Project
Notebook Design to be Used in the Project
Examining the Project Topic
Recognizing Variables in Dataset
Required Python Libraries
Loading the Dataset
Initial analysis on the dataset
Examining Missing Values
Examining Unique Values
Separating variables (Numeric or Categorical)
Examining Statistics of Variables
Numeric Variables (Analysis with Distplot)
Categoric Variables (Analysis with Pie Chart)
Examining the Missing Data According to the Analysis Result
Numeric Variables – Target Variable (Analysis with FacetGrid)
Categoric Variables – Target Variable (Analysis with Count Plot)
Examining Numeric Variables Among Themselves (Analysis with Pair Plot)
Feature Scaling with the Robust Scaler Method for New Visualization
Creating a New DataFrame with the Melt() Function
Numerical - Categorical Variables (Analysis with Swarm Plot)
Numerical - Categorical Variables (Analysis with Box Plot)
Relationships between variables (Analysis with Heatmap)
Dropping Columns with Low Correlation
Visualizing Outliers
Dealing with Outliers
Determining Distributions of Numeric Variables
Transformation Operations on Unsymmetrical Data
Applying One Hot Encoding Method to Categorical Variables
Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms
Separating Data into Test and Training Set
Logistic Regression
Cross Validation for Logistic Regression Algorithm
Roc Curve and Area Under Curve (AUC) for Logistic Regression Algorithm
Hyperparameter Optimization (with GridSearchCV) for Logistic Regression Algorithm
Decision Tree Algorithm
Support Vector Machine Algorithm
Random Forest Algorithm
Hyperparameter Optimization (with GridSearchCV) for Random Forest Algorithm
Project Conclusion and Sharing

Requirements
Desire to master on machine learning a-z, python, data science, statistics
Knowledge of Python Programming Language
Knowledge of data visualization libraries like Seaborn, Matplotlib in Python
Knowledge of basic Machine Learning
Be Able to Operate & Install Software On A Computer
Free software and tools used during the course
Determination to learn and patience.



Download torrent
2.1 GB
seeders:11
leechers:3
Udemy - Machine Learning Project - Heart Attack Prediction Analysis


Trackers

tracker name
udp://tracker.torrent.eu.org:451/announce
udp://tracker.tiny-vps.com:6969/announce
http://tracker.foreverpirates.co:80/announce
udp://tracker.cyberia.is:6969/announce
udp://exodus.desync.com:6969/announce
udp://explodie.org:6969/announce
udp://tracker.opentrackr.org:1337/announce
udp://9.rarbg.to:2780/announce
udp://tracker.internetwarriors.net:1337/announce
udp://ipv4.tracker.harry.lu:80/announce
udp://open.stealth.si:80/announce
udp://9.rarbg.to:2900/announce
udp://9.rarbg.me:2720/announce
udp://opentor.org:2710/announce
µTorrent compatible trackers list

Download torrent
2.1 GB
seeders:11
leechers:3
Udemy - Machine Learning Project - Heart Attack Prediction Analysis


Torrent hash: 0FA7D08FE1762304D7DB2AABC23167B80FB51209