Lynda | Applied Machine Learning: Foundations [FCO]

seeders: 26
leechers: 12
updated:

Download Fast Safe Anonymous
movies, software, shows...
  • Downloads: 239
  • Language: English

Files

[FreeCoursesOnline.Me] [LYNDA] Applied Machine Learning Foundations [FCO] 1.Introduction
  • 01.Leveraging machine learning.mp4 (19.1 MB)
  • 02.What you should know.mp4 (4.5 MB)
  • 03.What tools you need.mp4 (1.6 MB)
  • 04.Using the exercise files.mp4 (3.1 MB)
2.1. Machine Learning Basics
  • 05.What is machine learning.mp4 (6.0 MB)
  • 06.What kind of problems can this help you solve.mp4 (8.3 MB)
  • 07.Why Python.mp4 (12.1 MB)
  • 08.Machine learning vs. Deep learning vs. Artificial intelligence.mp4 (6.9 MB)
  • 09.Demos of machine learning in real life.mp4 (10.6 MB)
  • 10.Common challenges.mp4 (9.0 MB)
3.2. Exploratory Data Analysis and Data Cleaning
  • 11.Why do we need to explore and clean our data.mp4 (5.2 MB)
  • 12.Exploring continuous features.mp4 (24.2 MB)
  • 13.Plotting continuous features.mp4 (17.9 MB)
  • 14.Continuous data cleaning.mp4 (15.1 MB)
  • 15.Exploring categorical features.mp4 (15.1 MB)
  • 16.Plotting categorical features.mp4 (14.3 MB)
  • 17.Categorical data cleaning.mp4 (11.0 MB)
4.3. Measuring Success
  • 18.Why do we split up our data.mp4 (9.5 MB)
  • 19.Split data for train_validation_test set.mp4 (13.0 MB)
  • 20.What is cross-validation.mp4 (9.0 MB)
  • 21.Establish an evaluation framework.mp4 (7.0 MB)
5.4. Optimizing a Model
  • 22.Bias_Variance tradeoff.mp4 (8.1 MB)
  • 23.What is underfitting.mp4 (4.0 MB)
  • 24.What is overfitting.mp4 (4.6 MB)
  • 25.Finding the optimal tradeoff.mp4 (5.4 MB)
  • 26.Hyperparameter tuning.mp4 (9.6 MB)
  • 27.Regularization.mp4 (4.4 MB)
6.5. End-to-End Pipeline
  • 28.Overview of the process.mp4 (2.6 MB)
  • 29.Clean continuous features.mp4 (13.8 MB)
  • 30.Clean categorical features.mp4 (10.6 MB)
  • 31.Split data into train_validation_test set.mp4 (9.7 MB)
  • 32.Fit a basic model using cross-validation.mp4 (14.9 MB)
  • 33.Tune hyperparameters.mp4 (18.1 MB)
  • 34.Evaluate results on validation set.mp4 (18.5 MB)
  • 35.Final model selection and evaluation on test set.mp4 (24.1 MB)
7.Conclusion
  • 36.Next steps.mp4 (6.2 MB)
Exercise Files
  • Ex_Files_Applied_Machine_Learning.zip (3.4 MB)
  • Discuss.FTUForum.com.html (31.9 KB)
  • FreeCoursesOnline.Me.html (108.3 KB)
  • FTUForum.com.html (100.4 KB)
  • How you can help Team-FTU.txt (0.2 KB)
  • NulledPremium.com.url (0.2 KB)
  • Torrent Downloaded From GloDls.to.txt (0.1 KB)

Description



Author : Derek Jedamski
Language : English
Released : 5/10/2019
Torrent Contains : 43 Files, 8 Folders
Course Source : https://www.lynda.com/Python-tutorials/Applied-Machine-Learning-Foundations/751335-2.html

Description

Anyone who can write basic Python is capable of fitting a simple machine learning model on a clean dataset. The competitive edge comes in the ability to customize and optimize those models for specific problems. The workflow used to build effective machine learning models and the methods used to optimize those models are typically not algorithm or problem specific. In this course, the first installment in the two-part Applied Machine Learning series, instructor Derek Jedamski digs into the foundations of machine learning, from exploratory data analysis to evaluating a model to ensure it generalizes to unseen examples. Instead of zeroing in on any specific machine learning algorithm, Derek focuses on giving you the tools to efficiently solve nearly any kind of machine learning problem.

Topics include:

• What is machine learning (ML)?
• ML vs. deep learning vs. AI
• Handling common challenges in ML
• Plotting continuous features
• Continuous and categorical data cleaning
• Measuring success
• Overfitting and underfitting
• Tuning hyperparameters
• Evaluating a model.

For More Udemy Free Courses >>> https://ftuforum.com/
For more Lynda and other Courses >>> https://www.freecoursesonline.me/
Our Forum for discussion >>> https://discuss.ftuforum.com/






Download torrent
381 MB
seeders:26
leechers:12
Lynda | Applied Machine Learning: Foundations [FCO]


Trackers

tracker name
udp://tracker.iamhansen.xyz:2000/announce
udp://tracker.torrent.eu.org:451/announce
udp://tracker.cyberia.is:6969/announce
udp://tracker.leechers-paradise.org:6969/announce
udp://tracker.uw0.xyz:6969/announce
udp://exodus.desync.com:6969/announce
udp://explodie.org:6969/announce
udp://denis.stalker.upeer.me:6969/announce
udp://tracker.opentrackr.org:1337/announce
udp://9.rarbg.to:2710/announce
udp://tracker.tiny-vps.com:6969/announce
udp://ipv4.tracker.harry.lu:80/announce
udp://tracker.coppersurfer.tk:6969/announce
udp://tracker.internetwarriors.net:1337/announce
udp://open.demonii.si:1337/announce
µTorrent compatible trackers list

Download torrent
381 MB
seeders:26
leechers:12
Lynda | Applied Machine Learning: Foundations [FCO]


Torrent hash: FA6FA3238E15B9281AC82C9A493DB3A9A43FAFFE