Hands-On Graph Neural Networks Using Python - Practical techniques and architectures (True EPUB)

seeders: 15
leechers: 0
updated:

Download Fast Safe Anonymous
movies, software, shows...
  • Downloads: 43
  • Language: English

Files

[ DevCourseWeb.com ] Hands-On Graph Neural Networks Using Python - Practical techniques and architectures (True EPUB)
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here !
    • Bonus Resources.txt (0.4 KB)
    • HandsOnGraphNeuralNetworksUsingPython.epub (15.1 MB)

Description

Hands-On Graph Neural Networks Using Python: Practical techniques and architectures (True EPUB)



https://DevCourseWeb.com

English | 2023 | ISBN: 1804617520 | 701 pages | True EPUB | 15.09 MB

Design robust graph neural networks with PyTorch Geometric by combining graph theory and neural networks with the latest developments and apps
Purchase of the print or Kindle book includes a free PDF eBook

Key Features
Implement state-of-the-art graph neural network architectures in Python
Create your own graph datasets from tabular data
Build powerful traffic forecasting, recommender systems, and anomaly detection applications



Download torrent
15.1 MB
seeders:15
leechers:0
Hands-On Graph Neural Networks Using Python - Practical techniques and architectures (True EPUB)


Trackers

tracker name
udp://tracker.torrent.eu.org:451/announce
udp://tracker.tiny-vps.com:6969/announce
http://tracker.foreverpirates.co:80/announce
udp://tracker.cyberia.is:6969/announce
udp://exodus.desync.com:6969/announce
udp://explodie.org:6969/announce
udp://tracker.opentrackr.org:1337/announce
udp://9.rarbg.to:2780/announce
udp://tracker.internetwarriors.net:1337/announce
udp://ipv4.tracker.harry.lu:80/announce
udp://open.stealth.si:80/announce
udp://9.rarbg.to:2900/announce
udp://9.rarbg.me:2720/announce
udp://opentor.org:2710/announce
µTorrent compatible trackers list

Download torrent
15.1 MB
seeders:15
leechers:0
Hands-On Graph Neural Networks Using Python - Practical techniques and architectures (True EPUB)


Torrent hash: 169AA993F4D6F33832119793E5A46CDC1DB6FD7C