Deep Learning for Computer Vision

seeders: 46
leechers: 21
updated:
Added by tutsnode in Other > Tutorials

Download Fast Safe Anonymous
movies, software, shows...
  • Downloads: 74
  • Language: English

Files

Deep Learning for Computer Vision [TutsNode.net] - Deep Learning for Computer Vision 7. DL for Computer Vision
  • 2. Data Augmentation.mp4 (274.8 MB)
  • 1.1 5.2-1_ImageClassification_Convnets.zip (202.7 KB)
  • 1. Keras ImageData Processing Tools.mp4 (263.1 MB)
  • 5.1 8_ComVision_3.zip (126.0 KB)
  • 2. Data Augmentation.srt (45.2 KB)
  • 1. Keras ImageData Processing Tools.srt (43.2 KB)
  • 4. Demo - VGG16.srt (37.2 KB)
  • 3. VGG16, Pretrained network.srt (33.3 KB)
  • 4.1 5.3-1_PretrainedConvnet_featureExtraction.zip (3.5 KB)
  • 5. Improvements with Data Generation - VGG16.srt (30.1 KB)
  • 4. Demo - VGG16.mp4 (207.7 MB)
  • 5. Improvements with Data Generation - VGG16.mp4 (180.3 MB)
  • 3. VGG16, Pretrained network.mp4 (138.6 MB)
2. Artificial Neural Network (ANN)
  • 2. Optimizer and Activation Functions.srt (27.9 KB)
  • 1. Backpropagation.srt (39.8 KB)
  • 4. Loss Functions.srt (18.9 KB)
  • 3. Demo- Activation Function.srt (2.4 KB)
  • 1. Backpropagation.mp4 (159.8 MB)
  • 2. Optimizer and Activation Functions.mp4 (100.8 MB)
  • 4. Loss Functions.mp4 (53.3 MB)
  • 3. Demo- Activation Function.mp4 (12.8 MB)
8. Advanced DL for Computer Vision
  • 8.1 9_3b_VisualizeConvnetFilters.zip (554.0 KB)
  • 3.1 9_2a_ImageProc_ResidualNet.zip (167.1 KB)
  • 6.1 9_2b_ImageProc_XceptionNet.zip (136.5 KB)
  • 10. Model Fitment - Design Issues.srt (32.1 KB)
  • 6. Xception Model Demo.mp4 (259.3 MB)
  • 1.1 9_1_ImageSegmentation.zip (64.9 KB)
  • 2. ResNet Overview.srt (45.7 KB)
  • 6. Xception Model Demo.srt (44.2 KB)
  • 4. Depthwise Separable Convolution.srt (40.8 KB)
  • 8. Visualize Convnet filters for Xception.srt (33.2 KB)
  • 5. Xception Concept Overview.srt (13.0 KB)
  • 2. ResNet Overview.mp4 (243.2 MB)
  • 3. Pooling, ResNet Demo.srt (33.0 KB)
  • 1. Image Segmentation, Demo.srt (30.5 KB)
  • 7. Keras Xception support.srt (19.0 KB)
  • 9. Filters Interpretation.srt (5.3 KB)
  • 8. Visualize Convnet filters for Xception.mp4 (214.7 MB)
  • 4. Depthwise Separable Convolution.mp4 (188.7 MB)
  • 1. Image Segmentation, Demo.mp4 (172.2 MB)
  • 10. Model Fitment - Design Issues.mp4 (155.8 MB)
  • 3. Pooling, ResNet Demo.mp4 (155.1 MB)
  • 7. Keras Xception support.mp4 (122.6 MB)
  • 5. Xception Concept Overview.mp4 (71.7 MB)
  • 9. Filters Interpretation.mp4 (29.3 MB)
5. Computer Vision - CNN, Handling Images
  • 2.1 2_keras.zip (80.8 KB)
  • 1. CNN - Convolutional Neural Network.srt (32.9 KB)
  • 3. Demo - CNN (Part 2).srt (24.9 KB)
  • 2. Demo - CNN (Part 1).srt (21.0 KB)
  • 3. Demo - CNN (Part 2).mp4 (168.1 MB)
  • 2. Demo - CNN (Part 1).mp4 (140.0 MB)
  • 1. CNN - Convolutional Neural Network.mp4 (122.7 MB)
4. Functional API
  • 2.1 7.1-2b_multiInput_multiOutput.zip (67.9 KB)
  • 1.1 7.1-1_functionAPI_intro.zip (1.3 KB)
  • 1. Functional API and Demo.srt (30.3 KB)
  • 2. MIMO Functional API with Demo.srt (21.8 KB)
  • 1. Functional API and Demo.mp4 (163.8 MB)
  • 2. MIMO Functional API with Demo.mp4 (148.6 MB)
1. Introduction
  • 2. Deep Learning Introduction.srt (39.7 KB)
  • 3. Keras Introduction.srt (20.6 KB)
  • 2. Deep Learning Introduction.mp4 (212.8 MB)
  • 3. Keras Introduction.mp4 (74.0 MB)
  • 1. Contents.mp4 (54.9 MB)
6. Mathematics - Gradients, Back Propagation
  • 2. Gradients, Back Propagation (Part 2).srt (31.4 KB)
  • 2. Gradients, Back Propagation (Part 2).mp4 (218.1 MB)
  • 1. Gradients, Back Propagation (Part 1).mp4 (155.3 MB)
3. Keras - Quick Start
  • 3. Demo with Keras.srt (26.3 KB)
  • 3.1 1_keras.zip (23.4 KB)
  • 2. Getting Started with Keras.srt (10.6 KB)
  • 1. Prerequisite, Environment (Dev).srt (4.3 KB)
  • 3. Demo with Keras.mp4 (161.9 MB)
  • 2. Getting Started with Keras.mp4 (40.5 MB)
  • 1. Prerequisite, Environment (Dev).mp4 (18.0 MB)
  • TutsNode.net.txt (0.1 KB)
  • .pad
    • 0 (0.2 KB)
    • 1 (0.4 KB)
    • 2 (0.5 KB)
    • 3 (480.0 KB)
    • 4 (879.3 KB)
    • 5 (355.9 KB)
    • 6 (224.3 KB)
    • 7 (286.7 KB)
    • 8 (312.9 KB)
    • 9 (766.0 KB)
    • 10 (823.9 KB)
    • 11 (918.0 KB)
    • 12 (198.5 KB)
    • 13 (81.3 KB)
    • 14 (242.3 KB)
    • 15 (188.5 KB)
    • 16 (757.7 KB)
    • 17 (922.4 KB)
    • 18 (457.9 KB)
    • 19 (22.6 KB)
    • 20 (413.0 KB)
    • 21 (299.1 KB)
    • 22 (393.7 KB)
    • 23 (193.0 KB)
    • 24 (40.5 KB)
    • 25 (288.1 KB)
    • 26 (96.3 KB)
    • 27 (766.5 KB)
    • 28 (546.1 KB)
    • 29 (709.8 KB)
    • 30 (1,020.7 KB)
  • [TGx]Downloaded from torrentgalaxy.to .txt (0.6 KB)

Description


Description

Computer vision is an area of deep learning dedicated to interpreting and understanding images. It is used to help teach computers to “see” and to use visual information to perform visual tasks

Computer vision models are designed to translate visual data based on features and contextual information identified during training. This enables models to interpret images and apply those interpretations to predictive or decision making tasks.

Image processing involves modifying or enhancing images to produce a new result. It can include optimizing brightness or contrast, increasing resolution, blurring sensitive information, or cropping. The difference between image processing and computer vision is that the former doesn’t necessarily require the identification of content.

Deep Learning is part of a broader family of machine learning methods based on artificial neural networks.

Deep-learning architectures such as deep neural networks, recurrent neural networks, convolutional neural networks have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, medical image analysis, material inspection and board game programs, where they have produced good results

Artificial neural networks (ANNs) were inspired by information processing and distributed communication nodes in biological systems. ANNs have various differences from biological brains.

Keras is the most used deep learning framework. Keras follows best practices for reducing cognitive load: it offers APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages.

Following topics are covered as part of the course

Introduction to Deep Learning
Artificial Neural Networks (ANN)
Activation functions
Loss functions
Gradient Descent
Optimizer
Image Processing
Convnets (CNN), hands-on with CNN
Gradients and Back Propagation – Mathematics
Gradient Descent
Mathematics
Image Processing / CV – Advanced
Image Data Generator
Image Data Generator – Data Augmentation
VGG16 – Pretrained network
VGG16 – with code improvements
Functional API
Intro to Functional API
Multi Input Multi Output Model
Image Segmentation
Pooling
Max, Average, Global
ResNet Model
Resnet overview
Resnet concept model
Resnet demo
Xception
Depthwise Separable Convolution
Xception overview
Xception concept model
Xception demo
Visualize Convnet filters

Who this course is for:

Python programmers, Machine Learning aspirants, Deep Learning Aspirants

Requirements

Python

Last Updated 8/2022



Download torrent
4.6 GB
seeders:46
leechers:21
Deep Learning for Computer Vision


Trackers

tracker name
udp://open.stealth.si:80/announce
udp://tracker.tiny-vps.com:6969/announce
udp://fasttracker.foreverpirates.co:6969/announce
udp://tracker.opentrackr.org:1337/announce
udp://explodie.org:6969/announce
udp://tracker.cyberia.is:6969/announce
udp://ipv4.tracker.harry.lu:80/announce
udp://tracker.uw0.xyz:6969/announce
udp://opentracker.i2p.rocks:6969/announce
udp://tracker.birkenwald.de:6969/announce
udp://tracker.torrent.eu.org:451/announce
udp://tracker.moeking.me:6969/announce
udp://tracker.dler.org:6969/announce
udp://9.rarbg.me:2970/announce
µTorrent compatible trackers list

Download torrent
4.6 GB
seeders:46
leechers:21
Deep Learning for Computer Vision


Torrent hash: 8C4D7BF29230147CBBEDB6F92D0CD8B868F3BACF