Data Manipulation In Python - A Pandas Crash Course by Asim Noaman

seeders: 18
leechers: 19
updated:

Download Fast Safe Anonymous
movies, software, shows...
  • Downloads: 87
  • Language: English

Files

[ DevCourseWeb.com ] Data Manipulation In Python - A Pandas Crash Course by Asim Noaman
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1 - Introduction
    • 1 - Introduction.mp4 (16.2 MB)
    • 2 - Pandas Installation Link.txt (0.1 KB)
    • 2 - Python Jupyter NoteBook Installation.mp4 (51.8 MB)
    • 3 - Introduction to Data Analysis.mp4 (7.7 MB)
    • 3 - Introduction.pptx (1.4 MB)
    • 4 - Real Time Business Intelligence Problems.mp4 (10.7 MB)
    • 5 - Introduction to Pandas Library.mp4 (5.2 MB)
    2 - Data Manipulation with Pandas
    • 10 - How to Identify Unique Values.mp4 (14.2 MB)
    • 10 - titanic.csv (56.6 KB)
    • 11 - How to Filter the dataset.mp4 (6.8 MB)
    • 11 - titanic.csv (56.6 KB)
    • 12 - How to filter Specific Numbers of Records.mp4 (9.2 MB)
    • 12 - titanic.csv (56.6 KB)
    • 13 - How to Apply Logical Condition.mp4 (4.3 MB)
    • 13 - titanic.csv (56.6 KB)
    • 14 - How to Replace Null Values.mp4 (5.8 MB)
    • 14 - titanic.csv (56.6 KB)
    • 6 - Importing Libraries in JupyterNote Book.mp4 (6.4 MB)
    • 6 - Jupyter Notebook.txt
    • 7 - How to View Dataset.mp4 (4.0 MB)
    • 7 - titanic.csv (56.6 KB)
    • 8 - How to fetch Columns.mp4 (5.3 MB)
    • 8 - titanic.csv (56.6 KB)
    • 9 - How to Perform Descriptive Analysis.mp4 (15.0 MB)
    • 9 - titanic.csv (56.6 KB)
    • 3 - Data Visualization with Pandas
      • 15 - How to Create Count plot.mp4 (12.5 MB)
      • 15 - titanic.csv (56.6 KB)
      • 16 - How to Create Histogram.mp4 (12.3 MB)
      • 16 - titanic.csv (56.6 KB)
      • 17 - How to Create Bar Plot.mp4 (6.7 MB)
      • 17 - titanic.csv (56.6 KB)
      • 18 - How to Create Scatter Plot.mp4 (6.4 MB)
      • 18 - titanic.csv (56.6 KB)
      • 19 - How to Create Box Plot.mp4 (5.4 MB)
      • 19 - titanic.csv (56.6 KB)
      • 20 - Pandas Library chearsheet.mp4 (107.4 MB)
      • 20 - titanic.csv (56.6 KB)
      • 21 - What is Data Cleaning.mp4 (42.6 MB)
      • 21 - titanic.csv (56.6 KB)
      4 - Data Analysis with Power Query
      • 22 - Live Data Analysis with Power Query Ms Excel.mp4 (1.8 GB)
      • 23 - How to Append Multiple Excel Sheets.mp4 (99.8 MB)
      • Bonus Resources.txt (0.4 KB)

Description

Data Manipulation In Python: A Pandas Crash Course by Asim Noaman

https://DevCourseWeb.com

Published 10/2023
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 2.25 GB | Duration: 1h 51m

Learn how to use Python and Pandas for data analysis and data manipulation. Transform, clean and merge data with Python.

What you'll learn
Learn how to use Python and Pandas for data analysis and data manipulation. Transform, clean and merge data with Python.
Data Visualization with Python
Create, save and serialise data frames in and out of multiple formats.
Detect and intelligently fill missing values.
Merge data sources into a beautiful whole.
Seamlessly work with data from different time zones.
Learn the common pitfalls and traps that ensnare beginners and how to avoid them.

Requirements
Basic knowledge of Python



Download torrent
2.2 GB
seeders:18
leechers:19
Data Manipulation In Python - A Pandas Crash Course by Asim Noaman


Trackers

tracker name
udp://tracker.torrent.eu.org:451/announce
udp://tracker.tiny-vps.com:6969/announce
http://tracker.foreverpirates.co:80/announce
udp://tracker.cyberia.is:6969/announce
udp://exodus.desync.com:6969/announce
udp://explodie.org:6969/announce
udp://tracker.opentrackr.org:1337/announce
udp://9.rarbg.to:2780/announce
udp://tracker.internetwarriors.net:1337/announce
udp://ipv4.tracker.harry.lu:80/announce
udp://open.stealth.si:80/announce
udp://9.rarbg.to:2900/announce
udp://9.rarbg.me:2720/announce
udp://opentor.org:2710/announce
µTorrent compatible trackers list

Download torrent
2.2 GB
seeders:18
leechers:19
Data Manipulation In Python - A Pandas Crash Course by Asim Noaman


Torrent hash: D3A20DE001F2C85FD961B55D651EB20BF19EC3F5